22/08(a)

NOVEMBER 2006

The University of Sydney

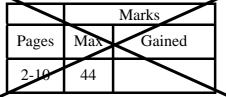
CHEMISTRY 1B - CHEM1102

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBEI	R
OTHER	TABLE	
NAMES	NUMBEI	R

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 20 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks		
Page	Max	Gained		Marker
11	2			
12	4			
13	10			
14	8			
15	3			
16	7			
17	6			
18	10			
19	6			
Total	56			

Marks

2

• Oxalic acid, $H_2C_2O_4$, found in rhubarb, causes muscle spasms by precipitating Ca^{2+} ions from the blood as calcium oxalate, $CaC_2O_4 \cdot H_2O$. Given the solubility product constant for calcium oxalate is $2.3 \times 10^{-9} M^2$, calculate the concentration of calcium ions in g L⁻¹ formed by dissolving $CaC_2O_4 \cdot H_2O$ in water at 25 °C to give a saturated solution.

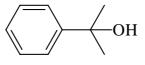
Answer:

Marks • The following initial rate data have been obtained for the gas phase reaction of 4 nitrogen dioxide, $NO_2(g)$, and ozone, $O_3(g)$, at 300 K. $2NO_2(g) + O_3(g) \rightarrow N_2O_5(g) + O_2(g)$ Rate M s^{-1} [O₃(g)] M [NO₂(g)] M $2.61 imes 10^4$ 0.65 0.80 4.40×10^4 1.10 0.80 8.80×10^4 1.10 1.60 What is the order of this reaction with respect to each reagent? What is the rate constant of the reaction? Answer:

CHEM1102	CHEM1102 2006-N-4 November 20						
• Briefly explain why H ₂ O.					22/08(a) Marks 2		
Compounds of <i>d</i> -bloc to represent atomic of	ock elements a orbitals, accou	are frequently par ant for this proper	amagnetic. U ty in compour	Using the box notation nds of Cu ²⁺ .	2		
• Complete the follow	ing table.				6		
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> - electrons in the transition metal	Species formed upon dissolving in water			
Na ₂ [CoCl ₄]							
[Ni(NH ₃) ₅ (H ₂ O)]SO ₄							
[Cr(en) ₃]Br ₃							

 $en = ethylenediamine = NH_2CH_2CH_2NH_2 \\$

CHEM1102 20	06-N-5	November 2006	22/08(a)
• Solution A consists of a 0.25 M aq Calculate the pH of Solution A. T			Marks 8
	Answer:		_
At 25 °C, 1.00 L of Solution B con- water. Calculate the pH of Solutio		dium azide (NaN3) dissolved in	
	Answer:		-
Solution B (1.00 L) is poured into 25 °C to give Solution C. Calculat			
	Answer:		-
If you wanted to adjust the pH of S equal to 4.00, which component in need to increase in concentration?			


CHEM1102	2006-N-6	November 2006	22/08(a)
	by an "allotrope". Give an ex a pair <i>not</i> involving oxygen.	ample of a pair of allotropes	Marks 3

Marks • The structure of lignocaine, a local anaesthetic, is given below. 7 Η b a ÷ Give the molecular formula of lignocaine. Name the functional groups in lignocaine indicated by boxes "a" and "b". **b**: a: Give the structure(s) of all organic products formed when lignocaine is treated with the following reagents. If no reaction occurs, write "NO REACTION". cold HCl (1 M) hot NaOH (4 M) hot HCl (4 M) THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Draw the constitutional formula of the major organic product formed in each of the 6 following reactions. Br_2 Ö $SOCl_2$ ЮH CH_3COOH ЪЮ H^{\oplus} / heat OH $\operatorname{Cr_2O_7}^{2 \ominus}/\operatorname{H}^\oplus$ 1. LiAlH₄ 2. H^{\oplus}/H_2O СООН Br_2 FeBr₃

Marks • Propionaldehyde (propanal) is treated first with phenylmagnesium bromide in dry 5 diethyl ether and then with dilute aqueous acid, to yield alcohol G. OH CH₂CH₃ G State whether **G** is obtained as the (R)-enantiomer, the (S)-enantiomer, a racemic mixture, or is achiral. List below, the substituents on the stereogenic carbon atom in G, in decreasing priority (*i.e.* from highest to lowest priority), as determined by the sequence rules. highest priority lowest priority Draw the (R) enantiomer of **G**, showing the correct absolute stereochemistry. 5 The incomplete proposed mechanism for the reaction of (*E*)-but-2-ene with aqueous ٠ acid is shown below. Complete the mechanism by adding curly arrows and relevant lone pairs to illustrate the bonding changes that take place. H^{\oplus} Н Ή H What two-word description may be used for the name of this mechanism?

CHEM1102	November 2006	22/08(a)	
Note that your synthetic r	oute will require more reagents you would use a	g from propene and bromobenzene. than one step from each starting and draw constitutional formulas for	Marks 6
	+	Fr	

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10 ⁻⁶	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10^{9}	giga	G				
10^{-12}	pico	р							

1

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_a/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																·	2 нелим Не 4.003
3 LITHIUM	4 beryllium											5 boron	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11 sodium	12 magnesium	-										13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 ARGON
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19 POTASSIUM	20 calcium	21 scandium	22 TITANIU	23 VANADIUM	24 CHROMIUM	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 GERMANIUM	33 ARSENIC	32.07 34 SELENIUM	35 BROMINE	36 KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37 RUBIDIUM	38 STRONTIUM	39	40 zirconiu	41	42 MOLYBDENUM	43 тесниетим	44 RUTHENIUM	45 RHODIUM	46 PALLADIUM	47 SILVER	48 CADMIUM	49 INDIUM	50 TIN	51	52 TELLURIUM	53 IODINE	54 xenon
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb	Mo 95.94	Tc [98.91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
55 CAESIUM	56 BARIUM	57-71	72	73	74 TUNGSTEN	[98.91] 75 RHENIUM	76	102.91 77 ікіріцм	78 PLATINUM	79 _{GOLD}	80 MERCURY	81	82 LEAD	83 візмитн	84 POLONIUM	85 ASTATINE	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.91 87	137.34 88	89-103	178.4 104	105	183.85 106	186.2 107	190.2 108	192.22 109	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
FRANCIUM Fr [223.0]	RADIUM Ra [226.0]		RUTHERFOR Rf [261]	Db	seaborgium Sg [266]	вонятим Bh [262]	наssium Hs [265]	MEITNERIUM Mt [266]									
	57		8 aum	59 praseodymium	60	61 promethium	62 samarium	63 Europium	64 gadolinium	65 M TERBI		66 PROSIUM I	67 IOLMIUM	68 erbium	69 THULIUM	70 ytterbium	71
LANTHANID	ES LANTHA La 138.	a C	Ce 0.12	Pr 140.91	NEODYMIUM Nd 144.24	Pm [144.9]	SMARIUM Sm 150.4	Eu 151.96	GABOLINIU Gd 157.25	T	b]	Dy	Ho 64.93	Er 167.26	Tm 168.93	Yb 173.04	LUIENTM LU 174.97
	89	9 9	0	91	92	93	94	95	96	97	7	98	99	100	101	102	103
ACTINIDES	A	c T	^{ким}	PROTACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIUM Cm	BERKEL	s	Cf	Es	FERMIUM Fm	Mendelevium Md	NOBELIUM NO	LAWRENCIUM
	[227	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]] [247	.1] [2	52.1] [2	252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2006

CHEM1102 - CHEMISTRY 1B

22/08(b)